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Abstract

An elementary introduction to lattices, integration lattices and lattice rules is fol-
lowed by a description of the role of the dual lattice in assessing the trigonometric degree
of alattice rule. The connection with the classical lattice-packing problem is established:
Any s-dimensional cubature rule can be associated with an index p = §°/s!N, where ¢
is the enhanced degree of the rule and N its abscissa count. For lattice rules; this is
the packing factor of the associated dual lattice with respect to the unit s-dimensional
octahedron.

An individual cubature rule may be represented as a point on a plot of p against
4. Two of these plots are presented. They convey a clear idea of the relative cost-

effectiveness of various individual rules and sequences of rules.

1 The Integration Lattice and the Lattice Rule
A lattice rule is a cubature formula which approximates a multidimensional integral
5= fexdx 1)
[0,1)°

using as abscissas the points of an integration lattice. This article is concerned with the
trigonometric degree of a lattice rule. The first two sections contain background material
about lattices and the third about trigonometric degree. Much more detailed descriptions
of some of this may be found in [Ly89] and [S1J0o94].

An s-dimensional lattice (conventionally denoted by A) is a set of points in R® containing

no limit points and satisfying

p,gceA = pxqeA (2)
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Possibly the best-known s-dimensional lattice is the unit lattice Ag, also termed Z*. This

is the set of all points € R? all of whose components are integers, that is,
P = (po,p1,-..,ps) € Ao < p; = integer j=1,2,...,s. (3)

The lattices used in the construction of lattice rules are integration lattices, that is, lattices
A, satisfying
A D Ay. (4)

There are several conventional ways of specifying lattices. Any s-dimensional lattice
may be defined in terms of s appropriately chosen elements of A, namely, a;,as,...,a,.

These may be assembled to form the rows of a nonsingular matrix

a;

as

ag

This is termed a generator matrix of A. The elements of A comprise all points x of the form
X = Aa; + Aas + ...+ da, = A\A V)\EAO7 (6)

that is, the multipliers A; are all integers. A generator matrix is not unique to A. In fact,
when A is a generator matrix of A, so also is A’ = UA, where U is any integer unimodular
matrix. (A unimodular matriz satisfies |det U| = 1. Premultiplication by such a matrix is
equivalent to carrying out an elementary row operation on A. An integer matriz is one all

of whose elements are integers.)

Definition. An s-dimensional lattice rule QQ(A) associated with an integration lattice A is a
cubature rule over [0, 1]° that applies an equal weight 1/N to each of the N distinct points
peANIo, 1)



2 The Dual Lattice

Associated with any lattice A is its dual (or reciprocal or polar) lattice, conventionally

denoted by AL. One standard definition (the geometric definition) is
hec At ifandonlyif hx ¢ Z°forall xcA. (7)
A corresponding definition is simply
At is the lattice generated by B = (AT)7! (8)

where A is any generator matrix of A. When A is an integration lattice, that is, A D Ag, it
readily follows that AL C Ag. Thus, each element of its generator matrix B = B(A1) is an
integer, and B is an integer matrix.

The abscissa count N of the lattice rule is a simple geometric property of the dual
lattice. It is not difficult to show that the s-volume of an s-simplex generated by any s+ 1
distinct points of A is an integer multiple of |det A|/s!. When this integer is 1, the points
in question may be defined as a unit cell of the lattice. When one of these vertices is the
origin, the other s vertices of the lattice may be used as the rows of a generator matrix A.

Definition 1: The order of a lattice I is conventionally defined as Vrs!, where V7 is
the s-volume of a unit cell of L.

This is the inverse of the point-density of L. A simple limiting argument, based on the
density of points leads directly to the result that the number of points of A(A4) in [0,1)® is
simply |det A|~'. Since ABT = I, this coincides with | det B|, giving

N =|det A|7' = |det B| = V1!, (9)

where V1 is the s-volume of a unit cell of the dual lattice A*L.

Theorem 1: The abscissa count N of Q(A) is the order of AL,

In this article we are concerned only with the trigonometric degree of the lattice rule. In
view of this, we may confine our treatment to integrand functions f(x) that are continuous
on [0, 1]* and that have absolutely convergent Fourier series with respect to this interval.
We remark that our principal error expression (11) below, is valid for a far wider class of

integrand functions. Following convention, we denote the sum of the Fourier series by



F)= 3" fuc™™X, (10)

heAp
where fy, is a Fourier coefficient of f(x) with respect to [0, 1]°. We note that f(x) = f(x+A)
for all A € Ag and that, since f(x) is continuous, f(x) = f(x) for all x € (0, 1)°.

For a general cubature rule (), an expression for the error functional @ f — I f in terms of
the Fourier coefficients of the integrand function f is readily derived by using the classical
Poisson summation formula. In the case of a lattice rule, this derivation is straightforward.
We apply the operator Q(A) to each term of the Fourier series (10) separately. The calcula-
tion of Q(A)gn, where gn(x) = €8 turns out to be elementary. When h is an element of
the dual lattice A+, then, in view of (7) above, h.x is an integer for every x € A; since Q(A)
samples only these points, it follows that Q(A)gn = 1. When h is not an element of AL,
a more sophisticated argument is required to reduce Q(A)gn to zero. Thus, applying the
operator Q(A) to the Fourier series (10), we find many terms are annihilated. Specifically,

QU -1f= Y "hQWm= Y "jn (11)
heAg heAl
This constitutes a useful expression for the discretization error associated with a lattice rule
in terms of the Fourier coeflicients of the integrand function.

The dual lattice AL then provides directly two basic properties of the lattice rule Q(A).
According to (9) above, the abscissa count N(Q) is a simple multiple of the volume of the
basic cell of At; and each element of this dual lattice represents a nonvanishing term in
expression (11) for the discretization error. That is; the dual lattice comprises a chart or

diagram of the discretization error made by a lattice rule.

3 Lattice Rules of Specified Trigonometric Degree

In this paper, we use the following conventional definition. A trigonometric polynomial of

degree d is a function of the form

flx)= Z ape?™ X, (12)

|Ihf|<d



Here ||...|| stands for the L; norm, i.e. the sum of the absolute values of the components.

Clearly, the coeflicients ay are simply the Fourier coeflicients fh and ag = fo =1I1f. A

trivial change of emphasis in this definition produces the following equivalent definition.
A trigonometric polynomial is a function having only a finite number of nonzero Fourier

coefficients. It is of degree d, or equivalently of enhanced degree § = d + 1 if

~

fm=20 when ||h|] > 4. (13)

It is of strict enhanced degree § when it is not also of enhanced degree § — 1.

A cubature rule of enhanced (trigonometric) degree § is one that integrates all trigono-
metric polynomials of enhanced degree § exactly. (We term this to be of strict enhanced
degree § if it is not also of enhanced degree § + 1.)

For any positive integer 0, the right hand side of equation (11) may be re-expressed,

giving
QWS -I1f= Y fut+ 3 ju (14)
heAt heAt
1<||n||<$ [|h[[>s

When f(x) is a polynomial of enhanced degree §, (13) asserts that each Fourier coefficient
appearing in the second summation is zero. Thus, when in addition A+ contains no elements
for which 1 <||h|| < § , the entire right hand side vanishes; it follows that the lattice rule
Q(A) integrates f(x) exactly and is ipso facto of enhanced degree §. Thus, the enhanced
degree of the lattice rule Q(A) depends only on the location of the elements of the dual

lattice AL. Specifically, we have the following theorem.
Theorem. The strict enhanced degree § of Q(A) is

§ = min ||h]. (15)
heAt

For brevity, and for subsequent generalization, it is convenient to define an s-dimensional

crosspolytope

Os ={x € R’° :||x|| < ¢}. (16)



This is the strict convex hull of the 2° points (£, £6, ....,£8); when s = 3, this is a regular

octahedron. Two subsets that include only points in the unit lattice are denoted by

Qs :={h € A : ||h|| < &} (17)

5={h € Qs :|[h][#0}. (18)

Note that the summation range in (12) above is simply h € Qs and that the strict enhanced

degree (15) above is

§= max ¢ (19)
ALnQL,=0

Using terminology taken from the classical theory of geometric lattices (see, for example,
[GrLe87]), we may reexpress these results as follows.

Definition 2: A lattice A is admissible with respect to a (radially) symmetric region €2
if the only element of A in the interior of €2 is the origin. This is abbreviated to Q-admissible.

Theorem 2: The lattice rule Q(A) is of enhanced degree ¢ if and only if AL is Qs-
admissible.

As in other branches of cubature, one can define an optimal (lattice) rule of specified
trigonometric degree as a (lattice) rule of that degree whose abscissa count N is as small
as is possible. Note that we have defined, for every positive integer &, both optimal rules
and optimal lattice rules. Since the first population includes the second as a subset, the
abscissa count for an optimal rule cannot exceed the abscissa count for a corresponding
optimal lattice rule.

Optimal rules are known for the following (s, §) pairs: for all s with § = 1,2,3,4; for
all & with s = 1,2; and for (s,d) = (3,6). While some of the known optimal rules are not
lattice rules, there exists for each pair (s,d) mentioned above an optimal rule that is also a
lattice rule. In addition, optimal lattice rules are known for s = 3 when § is any multiple
of 6. For each (s,0) mentioned above, one optimal rule is listed in the Appendix. For
other assignments of (s, d), to the author’s knowledge, no rules have been established to be

optimal.



In addition, many lattice rules (particularly in three and four dimensions) have appeared
in the literature. These have resulted from computer searches over only part of the relevant
population, so they remain only candidates for optimality. The construction (See [CoLy01])
of the most recent, and currently the most thorough, list of rules follows an approach
suggested by the definition of an optimal rule given above. A large population of €s-
admissible rules AL was examined, and those having lowest order N (A1) were retained.
This was, in effect, an attempt to carry out a lattice-packing problem on a computer.

These rules have been termed K-optimal rules.

4 Connection with the Lattice-Packing Problem

Parts of classical geometric lattice theory are concerned with packing symmetric regions into
lattices. One version of the lattice packing-problem treats a fixed region, €2, and searches
for the densest lattice that has only one point within the region. We recall from (8) above
that the order of a lattice is an inverse measure of its density. The lattice-packing problem
is concerned with Q-admissible lattices L having the smallest order N(L).

Much of the theory is classical. In particular, Minkowski’s elegant theorem of 1904
assures us that, when § is a convex symmetric region, a necessary (but usually not sufficient)

condition for L to be Q-admissible is
vol(Q2) < 2°N(L). (20)

The quantity
p(L, Q) =wvol()/2°N (L) (21)

is termed the packing factor of L with respect to €. In view of Minkowski’s theorem,
p(L,Q2) <1 when Q is a symmetrical convex region.

The classical theory establishes the existence of critical lattices. Lo (having order N¢)
is a eritical lattice with respect to €2 if no other Q-admissible lattice L having order N < N¢

exists. The corresponding packing factor

k(Q) = p(Le, Q) = vol () /2° N (22)



is then termed the lattice constant for the region 2. For the s-dimensional octahedron Oy,

the only lattice constants known are 1,1,18/19 for s = 1,2,3, respectively.

5 The Cubature Rule Rho-Index

Theorems 1 and 2, with their associated definitions, indicate that a near-optimal or an
optimal lattice rule Q(A) is characterized by an Qs-admissible lattice A+ that has a low
order or an optimally low order N (A1). Thus, we may present our theory from the viewpoint
of the classical lattice-packing problem. In our application, we treat the region Qs, and the
population of lattices L has to be restricted to integer lattices AL. It is natural to define
a rho-index, p(Q), for the lattice rule Q(A) as the packing factor (21) above of A+ with

respect to €25. Since vol(€25) = 2°6°/s!, we have the following definition.

Definition:

p(Q) = % (23)

where §(Q) is the strict enhanced degree of Q and N(Q)) its abscissa count.

While the justification for this index has been presented above in terms of lattice rules
and lattice theory, this same definition clearly applies to any cubature rule, since it de-
pends only on the abscissa count and the enhanced degree. The bounds p(Q) < 1 and
p(Q) < k(Qs) apply directly only to lattice rules. A completely independent bound,however,
applies to the rho-index of any cubature formula. This is based on the well-known Moller-
Mysovskikh bound Npsg(s,d). This is a lower bound on the abscissa count of an s-
dimensional cubature rule of enhanced degree &, based on the properties of the set of
moment equations (ME) such a rule must satisfy. Explicit expressions for these bounds
and recurrence relations for their evaluation are given in [CoSI96]. It is trivial to show that
Ny (s, 0) > 6°/s!; equality may occur only when s < 2. Applying this somewhat crude
bound on Npg to Definition (23), we find p(@Q) < 1 for all quadrature rules. In fact, of
course, for specific s and §, the known values of Njg(s,d) may be employed, leading to
significantly smaller upper bounds on the rho-index.

It is straightforward to show that the rho-index of the m-copy version Q™) of any

cubature rule () coincides with the rho-index of ). This follows generally because 5(Q(m)) =



n8(Q) and N (@) = m* N (Q).
We summarize the properties of p(Q) discussed above.
Theorem: In the notation of this section, we have the following:
For all cubature rules @, p(Q(™) = p(Q) for all positive integer m.
For all cubature rules @, p(Q) < 6°/s!Nygp < 1.
For all lattice rules @, p(Q) < k(Q2s) = 6°/s!Ne < 1.

6 The Rho-Index as a Function of Degree

In the figures, p is plotted against § for several existing and hypothetical three-dimensional
and four-dimensional rules. An individual cubature rule is represented by a point.

This type of plot was introduced by Cools and Lyness [CoLy01], and these examples are
taken from that article. The horizontal line in Figure 1 at p = 18/19 represents an upper
bound on the rho-index for any lattice rule; the square symbols represent an upper bound
on the rho-index for any cubature rule. These are based on the inequalities in the previous
theorem; they do not represent known quadrature rules in general. The circular symbols
represent the K-optimal rules listed in [CoLy01]; the crosses represent rules published before
1990, which remained the best published until 2001.

One may note a fundamental dichotomy between results for even and for odd degree.
This might not be noticed if these results had been presented in terms of N rather than p
because N is generally a monotonic rapidly increasing function of §. This dichotomy occurs
in the bound (the square symbols), and this is clearly evident in the figures. This effect
occurs also in the K-optimal sequence, but in the figures we have deliberately deemphasised
it by connecting the symbols for odd § and the symbols for even § separately.

The figures may be used to illustrate a historical perspective. In three dimensions, any
product trapezoidal rule has p = 1/6 for all §, and the classical centre and vertex rule
has p = 2/3 for even 6. These rules have been widely used by scientists since the advent
of computing machines. Only the second sequence, if plotted in Figure 1, would appear
within the frame of the figure. These would lie on a horizontal line p = 2/3 close to the

lower margin of the figure. Continuing the historical perspective, a sequence of rules due to
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Figure 1: The rho-index of some optimal three-dimensional rules.

Noskov and his collaborators in the late 1980s appear as crosses. (See, for example, [Mys88]
and [Nos88].) Later, the K-optimal rules appeared in 2001. It remains to establish to what
extent the bounds indicated by the square symbols are attainable. But it is clear from the
figure that, for § > 10, they are unattainable by lattice rules.

A similar picture emerges in the four dimensional-case. Here the two classical rules have
rho-values 1/24 and 1/6, respectively, and representers of these two elementary rules would
not appear within the frame of Figure 2.

The reader will have noticed that the most of the results of interest appear to lie within
a horizontal strip. The upper edge is clearly p = 1. The somewhat irregular lower bound of
this strip is in keeping with the preceding theorem. It follows from that theorem that, for

all k> 2and n > 1 the optimal tho-values for § = n, kn, k*n, k3n, ... form a non-decreasing

10



sequence. Thus the overall sequence of optimal rho-values contains many non-decreasing

subsequences. This overall sequence appears to increase in general, but in a spasmodic way.

0.95 o =

0.9 m]

0.85 o

0.8

0.75

0.7

0.65

0.6

0.55 L | | | | | | | | | J
4 6 8 10 12 14 16 18 20 22 24

5 (= d+1)

Figure 2: The rho-index of some optimal four-dimensional rules.
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7 Concluding Remark

Much of the underlying theory presented here is not new. It has been assembled in a way
that emphasizes the connection with classical lattice theory and leads naturally to the rho-
index and its plot as a function of §. The author has found these plots be interesting and
aesthetically satisfying; they illustrate much of the present state of the art in a compact

and unambiguous way.

8 Appendix

This appendix contains parameters that define one optimal rule for every (s, ¢) pair for which
an optimal rule is known to the author. Other optimal rules of the same enhanced degree
may be constructed by displacement of the coordinate system, coordinate interchange, and
coordinate sign reversal. These last two, applied to a lattice rule, produce another, generally
distinct lattice rule.

An s-dimensional rank-1 lattice rule may be expressed in the form

Qf = QL N, 2,f = %éf ({Z}). (24)

where N is an integer that exceeds 1 and z is a nonzero element of the unit lattice Ag.
For all dimensions s > 1, the following assignments of N and z give optimal rules of the

stated enhanced degree §.

§=1, N=1; z=(0,0,...,0)
0=2; N=2 z=(1,1,...,1)
0=3; N=2s+1; z=(1,2,...,s)
d=4; N =ds; z=(1,3,...,2s = 1).

In addition, for s = 3, an optimal rule is defined by the assignment
d=16; N =38; z=(1,7,27),

and for s = 3 and § = 6m, the m-copy of this rule (which, when m > 1, cannot be expressed

in form (24)) is an optimal lattice rule.

12



For s = 2, the following assignments give optimal rules for all positive enhanced degree

Sodd; N =(62+1)/2; z=(1,9)
§even; N =§%/2; z=(1,641)
Finally, simple expressions for the Méller-Mysovskikh abscissa count bound Nasg(s,d) in-

clude

Nupll, 6] = 6 (25)
NyEg[2,8] = 622 § even
= (6°+1)/2 § odd
Nuygl3,8] = §(6%+2)/6 § even
= §(0*+5)/6 § odd
Nygl4,8] = 6%(6%+8)/24 § even
= (6" + 1467+ 9)/24 § odd.

Further information about the results quoted in this appendix may be found in [CoSI96].
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